Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biometals ; 32(5): 757-769, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31363876

RESUMO

Ferritin is a ubiquitous iron storage protein which plays key role in regulating iron homeostasis and metabolism. In this paper, the ferritin heavy chain homologs (HCH) and light chain homologs (LCH) from Bombyx mori (BmFerHCH and BmFerLCH) were amplified through PCR and cloned into the expression vector pET-30a(+). The recombinant BmFerHCH and BmFerLCH expressed in Escherichia coli were in the form of insoluble inclusion bodies, indicating that the two proteins were not in their natural structural conformation. In order to obtain refolded ferritin in vitro, the inclusion bodies (BmFerHCH and/or BmFerLCH) were dissolved in denaturing buffer (100 mM Tris, 50 mM Glycine, 8 M urea, 5 mM DTT, pH 8.0) and then refolded in refolding buffer (100 mM Tris, 400 mM L-arginine, 0.2 mM PMSF, 0.5 mM DTT). The result showed that it was only when both BmFerHCH and BmFerLCH were present together in the denaturing buffer that refolding was successful and resulted in the formation of heteropolymers (H-L chain dimers) over homopolymers (H-H chain or L-L chain dimers). Moreover, the molecules (NaCl, Triton and glycerol) were found to enhance protein refolding. The optimum temperature, pH and ratios of BmFerHCH/BmFerLCH required for refolding were found to be 10 °C, pH 7, 1:1 or 1:2, respectively. Finally, the refolded ferritin had the ability to store iron, exhibited ferroxidase activity, and could withstand high temperatures and pH treatment, which is consistent with ferritin in other species.


Assuntos
Bombyx/metabolismo , Ferritinas/metabolismo , Animais , Clonagem Molecular , Corpos de Inclusão/metabolismo , Ferro/metabolismo
2.
J Hematol Oncol ; 8: 82, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26156322

RESUMO

BACKGROUND: Combination therapy is a key strategy for minimizing drug resistance, a common problem in cancer therapy. The microtubule-depolymerizing agent vincristine is widely used in the treatment of acute leukemia. In order to decrease toxicity and chemoresistance of vincristine, this study will investigate the effects of combination vincristine and vorinostat (suberoylanilide hydroxamic acid (SAHA)), a pan-histone deacetylase inhibitor, on human acute T cell lymphoblastic leukemia cells. METHODS: Cell viability experiments were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and cell cycle distributions as well as mitochondria membrane potential were analyzed by flow cytometry. In vitro tubulin polymerization assay was used to test tubulin assembly, and immunofluorescence analysis was performed to detect microtubule distribution and morphology. In vivo effect of the combination was evaluated by a MOLT-4 xenograft model. Statistical analysis was assessed by Bonferroni's t test. RESULTS: Cell viability showed that the combination of vincristine and SAHA exhibited greater cytotoxicity with an IC50 value of 0.88 nM, compared to each drug alone, 3.3 and 840 nM. This combination synergically induced G2/M arrest, followed by an increase in cell number at the sub-G1 phase and caspase activation. Moreover, the results of vincristine combined with an HDAC6 inhibitor (tubastatin A), which acetylated α-tubulin, were consistent with the effects of vincristine/SAHA co-treatment, thus suggesting that SAHA may alter microtubule dynamics through HDAC6 inhibition. CONCLUSION: These findings indicate that the combination of vincristine and SAHA on T cell leukemic cells resulted in a change in microtubule dynamics contributing to M phase arrest followed by induction of the apoptotic pathway. These data suggest that the combination effect of vincristine/SAHA could have an important preclinical basis for future clinical trial testing.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Leucemia/tratamento farmacológico , Vincristina/uso terapêutico , Antineoplásicos Fitogênicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular , Sinergismo Farmacológico , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Vincristina/administração & dosagem , Vorinostat
3.
Oncotarget ; 6(7): 4976-91, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25669976

RESUMO

Histone deacetylase (HDAC) inhibitor has been a promising therapeutic option in cancer therapy due to its ability to induce growth arrest, differentiation, and apoptosis. In this study, we demonstrated that MPT0E028, a novel HDAC inhibitor, reduces the viability of B-cell lymphomas by inducing apoptosis and shows a more potent HDAC inhibitory effect compared to SAHA, the first HDAC inhibitor approved by the FDA. In addition to HDACs inhibition, MPT0E028 also possesses potent direct Akt targeting ability as measured by the kinome diversity screening assay. Also, MPT0E028 reduces Akt phosphorylation in B-cell lymphoma with an IC50 value lower than SAHA. Transient transfection assay revealed that both targeting HDACs and Akt contribute to the apoptosis induced by MPT0E028, with both mechanisms functioning independently. Microarray analysis also shows that MPT0E028 may regulate many oncogenes expression (e.g., TP53, MYC, STAT family). Furthermore, in vivo animal model experiments demonstrated that MPT0E028 (50-200 mg/kg, po, qd) prolongs the survival rate of mice bearing human B-cell lymphoma Ramos cells and inhibits tumor growth in BJAB xenograft model. In summary, MPT0E028 possesses strong in vitro and in vivo activity against malignant cells, representing a potential therapeutic approach for cancer therapy.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Linfoma de Células B/tratamento farmacológico , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Indóis/administração & dosagem , Linfoma de Células B/enzimologia , Linfoma de Células B/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncotarget ; 5(20): 9838-50, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25226613

RESUMO

Tissue inhibitors of metalloproteinases 3 (TIMP3) were originally characterized as inhibitors of matrix metalloproteinases (MMPs), acting as potent antiangiogenic proteins. In this study, we demonstrated that the arylsulfonamide derivative MPT0G013 has potent antiangiogenic activities in vitro and in vivo viainducing TIMP3 expression. Treatments with MPT0G013 significantly inhibited endothelial cell functions, such as cell proliferation, migration, and tube formation, as well as induced p21 and cell cycle arrest at the G0/G1 phase. Subsequent microarray analysis showed significant induction of TIMP3 gene expression by MPT0G013, and siRNA-mediated blockage of TIMP3 up-regulation abrogated the antiangiogenic activities of MPT0G013 and prevented inhibition of p-AKT and p-ERK proteins. Importantly, MPT0G013 exhibited antiangiogenic activities in in vivo Matrigel plug assays, inhibited tumor growth and up-regulated TIMP3 and p21 proteins in HCT116 mouse xenograft models. These data suggest potential therapeutic application of MPT0G013 for angiogenesis-related diseases such as cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/tratamento farmacológico , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-3/biossíntese , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Strahlenther Onkol ; 190(12): 1154-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24989178

RESUMO

BACKGROUND: The present study was undertaken to investigate whether radiation induces the expression of vascular endothelial growth factor C (VEGF-C) through activation of the PI3K/Akt/mTOR pathway,subsequently affecting endothelial cells. MATERIALS AND METHODS: Radiotherapy-induced tumor micro-lymphatic vessel density (MLVD) was determined in a lung cancer xenograft model established in SCID mice. The protein expression and phosphorylation of members of the PI3K/Akt/mTOR pathway and VEGF-C secretion and mRNA expression in irradiated lung cancer cells were assessed by Western blot analysis, enzyme-linked immunosorbent assays (ELISAs), and reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, specific chemical inhibitors were used to evaluate the role of the PI3K/Akt/mTOR signaling pathway. Conditioned medium (CM) from irradiated control-siRNA or VEGF-C-siRNA-expressing A549 cells was used to evaluate the proliferation of endothelial cells by the MTT assay. RESULTS: Radiation increased VEGF-C expression in a dose-dependent manner over time at the protein but not at the mRNA level. Radiation also up-regulated the phosphorylation of Akt, mTOR, 4EBP, and eIF4E, but not of p70S6K. Radiation-induced VEGF-C expression was down-regulated by LY294002 and rapamycin (both p < 0.05). Furthermore, CM from irradiated A549 cells enhanced human umbilical vein endothelial cell (HUVEC) and lymphatic endothelial cell (LEC) proliferation, which was not observed with CM from irradiated VEGF-C-siRNA-expressing A549 cells. CONCLUSIONS: Radiation-induced activation of the PI3K/Akt/mTOR signaling pathway increases VEGF-C expression in lung cancer cells, thereby promoting endothelial cell proliferation.


Assuntos
Proliferação de Células/efeitos da radiação , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos SCID , Dosagem Radioterapêutica , Resultado do Tratamento , Regulação para Cima/efeitos da radiação
6.
J Med Chem ; 57(10): 4009-22, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24766560

RESUMO

A series of indolylsulfonylcinnamic hydroxamates has been synthesized. Compound 12, (E)-3-(3-((1H-pyrrolo[2,3-b]pyridin-1-yl)sulfonyl)phenyl)-N-hydroxyacrylamide, which has a 7-azaindole core cap, was shown to have antiproliferative activity against KB, H460, PC3, HSC-3, HONE-1, A549, MCF-7, TSGH, MKN45, HT29, and HCT116 human cancer cell lines. Pharmacological studies indicated that 12 functions as a potent HDAC inhibitor with an IC50 value of 0.1 µM. It is highly selective for histone deacetylase 6 (HDAC6) and is 60-fold more active than against HDAC1 and 223-fold more active than against HDAC2. It has a good pharmacokinetic profile with oral bioavailability of 33%. In in vivo efficacy evaluations in colorectal HCT116 xenografts, compound 12 suppresses tumor growth more effectively than SAHA (1, N-hydroxy-N'-phenyloctanediamide) and is therefore seen as a suitable candidate for further investigation.


Assuntos
Antineoplásicos/síntese química , Inibidores de Histona Desacetilases/síntese química , Histona Desacetilases/metabolismo , Sulfonamidas/síntese química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Feminino , Células HCT116 , Células HEK293 , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos ICR , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Clin Cancer Res ; 20(5): 1274-1287, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24520095

RESUMO

PURPOSE: To investigate the antitumor activities of a histone deacetylase (HDAC) inhibitor, MPT0E028, plus sorafenib in liver cancer cells in vitro and in vivo. EXPERIMENTAL DESIGN: Different liver cancer cell lines were exposed to sorafenib in the presence or absence of MPT0E028, and cell viability was determined by MTT assay. Effects of combined treatment on cell cycle and intracellular signaling pathways were assessed by flow cytometry and Western blot analysis. The Hep3B xenograft model was used to examine the antitumor activity in vivo. RESULTS: Our data indicate that sorafenib and MPT0E028 synergistically reduced cell viability in liver cancer cells, and also markedly induced apoptotic cell death in these cells, as evidenced by the cleavage of caspase-3, PARP, and DNA fragmentation. MPT0E028 altered the global modifications of histone and nonhistone proteins regardless of the presence of sorafenib. However, sorafenib blocked MPT0E028-induced Erk activation and its downstream signaling cascades, such as Stat3 phosphorylation (Ser(727)) and Mcl-1 upregulation. Ectopic expression of constitutively active Mek successively reversed the apoptosis triggered by the combined treatment. Pharmacologic inhibition of Mek by PD98059 potentiated MPT0E028-induced apoptosis, suggesting that the synergistic interaction between MPT0E028 and sorafenib occurs at least partly through inhibition of Erk signaling. The data demonstrated that transcriptional activation of fibroblast growth factor receptor 3 (FGFR3) contributes to MPT0E028-mediated Erk phosphorylation. Finally, MPT0E028 plus sorafenib significantly improved the tumor growth delay (TGD) in a Hep3B xenograft model. CONCLUSIONS: These findings suggest that MPT0E028 in combination with sorafenib has significant anti-hepatocellular carcinoma activity in preclinical models, potentially suggesting a novel therapeutic strategy for patients with advanced hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sorafenibe , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Br J Pharmacol ; 171(1): 122-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24116948

RESUMO

BACKGROUND AND PURPOSE: The purpose of the current study was to assess a novel anti-cancer drug, MPT0B014, which is not a substrate for the P-glycoprotein (P-gp) transporter, alone and in combination with erlotinib, against human non-small cell lung cancer (NSCLC). EXPERIMENTAL APPROACH: Cytotoxicity in human NSCLC cell lines was assessed by sulforhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Cell cycle phase distributions were estimated with FACScan flow cytometry. Protein expression was detected by Western blotting analysis. Efflux of rhodamine 123 or calcein-acetoxymethylester was used to study the P-gp profile. The A549 xenograft model in mice was used to assess in vivo anti-tumour activity. KEY RESULTS: MPT0B014 showed potent anti-proliferative activity against A549, H1299 and H226 cells. It induced G2/M arrest with down-regulation of Cdc (Tyr15) and Cdc25C, and up-regulation of cyclin B1, phospho-Cdc2 (Thr161) and Aurora A/B. P-gp-overexpressing National Cancer Institute/Adriamycin-Resistant cells were also sensitive to B014. B014-induced loss of Mcl-1 was accompanied by activation of caspases-3, -7, -8 and -9, and initiation of apoptosis. B014 in combination with erlotinib caused significant tumour inhibition in vitro and in vivo. CONCLUSIONS AND IMPLICATIONS: MPT0B014 exerted cytotoxicity against human NSCLC cell lines with little susceptibility to P-gp. Combined with the EGF receptor inhibitor, erlotinib, MPT0B014 exerted significant growth inhibition of A549 cells both in vitro and in vivo. B014 could be useful as an anti-cancer agent.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Proteína Quinase CDC2 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B/metabolismo , Ciclina B1/metabolismo , Quinases Ciclina-Dependentes , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Cloridrato de Erlotinib , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosforilação , Quinazolinas/administração & dosagem , Quinolinas/administração & dosagem , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Fosfatases cdc25/metabolismo
9.
PLoS One ; 7(8): e43645, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928010

RESUMO

Recently, histone deacetylase (HDAC) inhibitors have emerged as a promising class of drugs for treatment of cancers, especially subcutaneous T-cell lymphoma. In this study, we demonstrated that MPT0E028, a novel N-hydroxyacrylamide-derived HDAC inhibitor, inhibited human colorectal cancer HCT116 cell growth in vitro and in vivo. The results of NCI-60 screening showed that MPT0E028 inhibited proliferation in both solid and hematological tumor cell lines at micromolar concentrations, and was especially potent in HCT116 cells. MPT0E028 had a stronger apoptotic activity and inhibited HDACs activity more potently than SAHA, the first therapeutic HDAC inhibitor proved by FDA. In vivo murine model, the growth of HCT116 tumor xenograft was delayed and inhibited after treatment with MPT0E028 in a dose-dependent manner. Based on in vivo study, MPT0E028 showed stronger anti-cancer efficacy than SAHA. No significant body weight difference or other adverse effects were observed in both MPT0E028-and SAHA-treated groups. Taken together, our results demonstrate that MPT0E028 has several properties and is potential as a promising anti-cancer therapeutic drug.


Assuntos
Acrilamida/farmacologia , Antineoplásicos/farmacologia , Neoplasias Colorretais/patologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Acetilação/efeitos dos fármacos , Acrilamida/síntese química , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Células HCT116 , Inibidores de Histona Desacetilases/síntese química , Humanos , Ácidos Hidroxâmicos/síntese química , Indóis/síntese química , Camundongos , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...